
Rovio and Juliet: Vision-based Autonomous Navigation with Real-time
Obstacle Learning

Jae Yong Sung, Jong Hwi Lee, Supasorn Suwajanakorn

Abstract— Our Rovio project’s goal is to make Rovio a totally
autonomous robot which can follow waypoints only based on
image and reach the goal position while learning and avoiding
obstacles on its way. Rovio will utilize the SURF (Speeded
Up Robust Features) to determine the direction. Rovio uses
vision to detect the properties of obstacles with various shapes
and colors and uses IR sensor to learn whether they are
obstacles or non-obstacles such as a flat tiles on the floor. It
then analyzes the information about the obstacles and decides
which direction it should move to based on the trapezoid safe
zone. Our program uses CGI commands for communication
with our Rovio, as written in Rovio API Specification. Wrapper
classes were written in Java, with standard java.net for network
connection and other open source projects for image processing.

I. INTRODUCTION

For a robot with only a visual sensor, autonomously
moving from a point to another is a difficult task. Many
algorithms have been developed and optimized in different
surroundings. In common, the main points of those previous
researches were on how to interpret the sensor data and
more accurately analyze the robot’s situation from what it
knows. Well known techniques relevant to this Rovio project
are robot localization, image filtering, image segmentation,
feature detection, moving object recognition, distance com-
putation, obstacle avoidance, to name a few.
Our Rovio project utilized some of known algorithms com-
bined with our own implementation. Through extensive
tuning of parameters, Rovio can effectively learn and avoid
obstacles and move around following the waypoint image
on both carpets and glossy surface. Navigation was based
mostly on comparing the waypoint image and image from
Rovio through SURF (Speeded Up Robust Features). Real-
time obstacle learning was crucial in that many types of floor
tends to have tiles which obvious is not an obstacle.

II. ROBOT

Rovio is a three-wheel robot that is able to move forward,
backward, sideways and turn any degree. Video streaming
resolution is set to 320 x 240. Rovio also has a height-
adjustable camera that can be positioned at low, middle, or
high level. It is also equipped with a mic/speaker and an IR
sensor.

III. OUR APPROACH

A. Filters

The Java Image Editor project from JH Labs provides a
number of image filters, and some of them were used in the
previous step of edge detection. Gaussian Filter was used to
reduce the noise of objects and the floor, which is a mixture

of dots with similar but not identical colors. Glow Filter
was used to resolve non-sharp edges, such as the shadow of
rolled white paper, which is shown as a gradient from white
to black.

B. SideFill Algorithm

After all the filters are applied, we have the edge de-
tected image. This algorithm is necessary for computer to
understand where the obstacle is located. For each column
of pixels, we sweep from the bottom and find the first edge
within that column. The green lines in the image show the
closest obstacles in every column of pixels.

C. Navigation

We use SURF (Speeded Up Robust Features) as our
feature detection algorithm. Given an image, SURF finds a
set of interested points for that image and compares it to a set
of interested points of another image. We did an experiment
to find a threshold for similarity and analyze the matched
points to determine the transformation. Once we know how
one image is transformed (translated, rotated, or scaled) into
another, we use that as a guide for Rovio e.g. how close it
is to the actual waypoint image, or deciding whether Rovio
is moving straight forward.



D. Waypoint

Our waypoint is a sequence of multi-layer images that are
taken every 3-6 feet from the starting point to the destination.
In some area, we have to take multiple pictures of the same
place from different angles for feature detection because
SURF algorithm does not perform well with pictures under
perspective transformation. To determine the current location
of Rovio, we take a window of size 5-9 that spans across the
waypoint, then find the image that most matches the picture
from the camera and assign that as the new current position.

E. Guide

When Rovio localizes itself on the waypoint, we are able
to provide some guides for Rovio. A guide associated with
each point on the waypoint includes how far apart one
waypoint is from the next one, how much to turn, and which
direction Rovio should go if it gets lost and doesnt find any
matched points. In real situation, we only use guide in some
location that SURF gives too few interested points.

F. Real-time Obstacle Learning

We implemented real-time obstacle learning algorithm that
learns obstacles as Rovio finds its way to the goal location.
We do not give any pre-trained values. It automatically learns
obstacles when it is possible and use those learned values
to identify obstacles. Such real-time obstacle learning was
crucial in that we often found fake obstacles such as tiles on
the floor.

1) Distinguishing Obstacles: To distinguish between ob-
stacles, we used color, texture, and size (either length or
height) of obstacle. For color and texture of an obstacle,
average of the color and variance of the color were used
respectively. By approximate size of an obstacle, it means
we just took an average of the height/size of an obstacle. The
height of an obstacle was used when it is a real obstacle, and
the length of an obstacle was used when it is a fake obstacle.

2) Learning: Rovio has IR sensor that only gives
true/false when object is within about 8 inches of an obstacle.
And it only detects when obstacle is located relatively right
in the middle of an image. Any obstacle that is off to the
side from the center of an image has chance of not being
detected even though they are close to Rovio. And if there
was any combination of a real obstacle and fake obstacle, IR
sensor will say true which will be the false positive for the
fake obstacle. To prevent such false positive and to satisfy
all the restrictions of IR sensor, our learning algorithm trains
the obstacle when there is only one obstacle in front that is
located relatively right in the middle of an image.

It takes following step for real-time learning. It first
finds each obstacle and retrieves the characteristics of each
obstacle: color, texture, height and length. We first retrieve
both height and length because he does not yet know whether
it is a real obstacle or not. It checks whether each of them
were trained before by comparing with data we have (more
detail in section 4 of this subsection). If they were not
trained before, it checks whether there is only one obstacle or
many obstacle. If there is only one obstacle and if it located
relatively at the middle of the image, Rovio will go forward
about a foot until it is detected by IR. We go forward because
IR sensor only supports distance up to about a foot. This is
safe way to train it because if it is a fake obstacle, it can
just go forward without any problem. If it is a real obstacle
and is detected by IR, it will stop as soon as IR says ”true”
and move backward by the amount it came forward. After
we have figured out whether the obstacle we saw was real
obstacle or not, we store the characteristic we retrieved in
our array of obstacle. When we first retrieved characteristic
of obstacle, we calculated both height and length. Now, it
only saves one of them: height if it is a real obstacle, length
if it is a fake obstacle. Also, along with characteristics of



obstacle, we store the indicator that says whether it is an
actual obstacle for comparing purpose in the future.

(image: Thick green line indicates obstacle being trained.
Vertical green line indicate approximate height of an obsta-
cle)

3) Finding Obstacles: Using the SideFill applied image,
it needs to figure out how many obstacles are close to our
trapezoid area. It finds the pixel column number of obstacle
in image that indicates start and end of an obstacle. In
order to find the starting column number of an obstacle, we
sweep from left to right and find an edge that’s close to our
trapezoid. Once I find the start of an obstacle, we continue
until there’s sudden change of the edge which will indicate
the end of an obstacle. Once it finds the start and end of each
obstacle, it already knows whether condition for training is
satisfied. And for each obstacle, we also need the top edge
in order to compute height/length of an obstacle. In order to
find the top edge of an obstacle, I apply SideFill algorithm
on just that obstacle sweeping from bottom of an obstacle
until it reaches top of an obstacle. More details on height
and length computation to follow in the next section.

4) Distinguishing Already Learned Obstacles: Before
Rovio tries to learn or avoid one or more obstacles, it first
extracts all the characteristics described earlier and compares
with set of already trained data of obstacles. If it matches
with any of them with certain threshold we set, we mark it as
either real obstacle or fake obstacle according to trained data.
We marked fake obstacles with pink line and indicated real
obstacles with yellow line. The yellow vertical line indicates
the approximate height it measure to compare with set of
trained data. And whenever we have multiple obstacles that
are not trained yet or one obstacle that is off to the side of
an image, we will assume it as a real obstacle until trained.
Using the data we trained, the obstacle will be detected as
long as it is not seen from completely different angle. If it
is seen from different angle, it will train that side of the
obstacle.

G. Challenges on Glossy Surface

With the algorithm described so far, it worked fairly well
on carpets. However, the glossy surface in the hallway of
Upson Hall, there were many challenges. First, the light
reflected on the floor causes it to look like an white obstacle.
This problem was automatically solved when it trained itself
that light was just an fake obstacle.

(Left: Training light, Right:Pink indicates it is an fake
obstacle)

There was real big challenge when the tile got separated
by light. It was big issue because our training algorithm
does not train when there is two obstacle in front. So, when
there are multiple obstacles, after we extract characteristic
of each obstacle, we compare them and see how closely
they are located. If they are closely located and have similar
properties, we merged two obstacles into one big obstacle.
With such algorithm, it was able to train on tile.

(Left: Tile separated by light, Right:Thick green line indi-
cates one obstacle being trained)

H. Calibration of Distance & Height
Throughout the experiment, we used 320 * 240 pictures.

Rovio has a V-shape camera view angle. The angle between
two edges of V are 52. In this section, actual x-distance and
actual y-distance is defined as the value computed respect
to Rovio’s camera located at (0,0) facing north. The y-axis
lies toward the north from Rovio’s viewpoint, the x-axis lies
from east to west of Rovio. Unit of actual distance is in
centimeters.

1) Actual Location of a Certain Pixel: When identical
objects were located in different places, the y-coordinate
of the object’s bottom in image increases as the actual y-
distance of the object from Rovio increases. The actual x-
distance is independent from object’s y-coordinate in image
but is proportional to the max actual x-distance Rovio can
see in that object’s y-coordinate (remember, that Rovio has
V-shape sight). The result of observation was that as the y-
coordinate in picture increases linearly, the actual y-distance
increases quadratically, and the x-distance

If (a,b) is the x,y-coordinate of pixel in the image, then
the relation is

actual y-distance = 0.0062b2 + 0.0266b + 26.292
actual x-distance = (x− 160) ∗ a ∗ tan(26)/160
This equation is effective 0(pixel) ≤ b ≤80(pixel), where

corresponding a is around 26-65 (cm). Equation for larger b
was not tested. The equation was obtained from regression to
quadratic polynomial, and the correlation R2 was 0.99674,
which is accurate enough.



2) Length calibration: Once we know the actual location
of pixels in respect to location of Rovio, we can calculate
the distance from Rovio to start of an fake obstacle and far
end of the fake obstacle. And the difference would be the
length of an obstacle.

3) Height calibration: When identical objects were seen
in different places, the height of them in picture decreases
as the actual y-distance from Rovio increases, and was
independent from actual x-distance. If ’b’ is the actual y-
distance from Rovio’s camera in centimeters and ’h’ is the
height in picture in pixel, then the relation is

actual height = h/(0.0036b2 − 0.5b + 22.613)
The data was obtained from 16 different measurements

with two obstacles of different height, and regressed into
a quadratic polynomial. The correlation R2 had very high
value of 0.99757. Error bound for test points was around
0.5cm.

This equation is effective for 26(cm) ≤ b ≤ 90(cm). If a
is less than 26, then Rovio’s camera cannot detect the bottom
of the object, and no testing was done for a larger than 90cm.

I. Trapezoid ”Safe” Area

Based on obstacle learning, we know whether they are real or
fake obstacles. Whenever we are moving around, we should
not be hitting any obstacles. This trapezoid helps Rovio to
understand whether it could go forward or not. Using the
output of the SideFill algorithm, if there is any obstacle
within trapezoid we defined, we turn around. The side it
turns and the angle it turns is determined by where the
obstacle is located within the trapezoid. If there are obstacles
within region A or C, it would make small right or left turn
respectively. However, if there are obstacles within B region,
it would first whether obstacles are leaned more towards left
hand side or the right hand side, and Rovio would make
either bigger left or right turn accordingly.

J. Close-Object Detection(Floor Learning)

For close-object recognition, it might seem that we could
have just used IR sensor to avoid such close obstacle.
However, through many testing, we noticed that Rovio’s very

unstable IR sensor sometimes detects objects very far away.
If it detects far-away object as obstacle, it causes Rovio to
turn when there is really no obstacle in-front. Therefore,
some learning was required to learn the floor data.

Floor learning algorithm is used to detect objects that are
too close to Rovio and fail to be captured by Edge Detection
algorithm. This problem occurs when Rovio interprets close-
objects as the ground due to the edge lying above the
trapezoid area. To avoid this problem, at every iteration,
we check whether there is any edge within trapezoid area
and also check IR sensor says false. If both conditions are
satisfied, as we did in obstacle learning, we retrieve the color
and texture of the bottom few rows of images, and store it
separately as floor data. Later, if there are no edges within
trapezoid ”safe” zone, we always check the color and texture
of the same lower part of the image from Rovio. If it is
significantly different from the floor color and texture we
stored, Rovio concludes that there is an obstacle right in front
of it, and turns around to avoid hitting it. At each iteration,
Rovio tries to retrieve the floor color as long as there are no
obstacles, so it is able to adapt to the change on floor.

IV. EXPERIMENT RESULT

http://www.youtube.com/watch?v=-lqu_kAOGrg
http://www.youtube.com/watch?v=LbBWiuL9fGU

- a full video of Rovio on both carpet and glossy surface
part 1: Obstacle Avoidance in Robot Lab
part 2: Obstacle Learning in Robot Lab (disabled Rovio

movement for showing purposes)
part 3: Obstacle Learning in Upson Hallway
- shows it can actually distinguish between real and fake

obstacles
part 4: Navigation using SURF in CSUG Lab
part 5: Navigation + Obstacle Learning/Avoidance on

bridge between Philips and Upson

A. Experiment with Rovio movement control

The irregularity of the floor and inaccuracy of the wheel
motor makes Rovio difficult to move exactly as planned. We
experimented with Rovio’s movement under different speeds
and directions of moving and turning. In the initial phase
of this experiment, we suffered Rovio’s crude turning and
abrupt advance in case it detects an obstacle in front and
caused it to hit another obstacle. Now Rovio is more cautious
than before and does not carelessly bump into anything
around. However, we still find the problem with the turning
angle which is greatly affected by the battery level of Rovio
and is also dependent on which Rovio we use.

B. Experiment with image processing

The Java Image Editor developed by the JH Labs has many
interesting filters in it, in which some are appropriate for edge
detection and some are not. We tried different combinations
of filters which works best under the decent amount of
light. Optimal result came out when we applied glow filter,
Gaussian blur filter, and edge detection in order. We have
tested under the darker room but it was detecting shadows



and carpets as the obstacles. We wanted to use segmented
image rather than edge detected image because we believed
that segmented image just would work better. But we were
not successful in finding decent Java segmentation code
and was not really able to connect Java with c++ based
segmentation due to image file type support of Java.

C. Experiment with SURF Navigation

We did an experiment to find the best threshold to deter-
mine whether two pictures are of the same area. We first
tried a ratio threshold which considers two images to be the
same if the number of matched points divided by the number
of interested points is above the threshold. However, this did
not work well for pictures with too few interested points. So
we tried an absolute threshold and used 5 matched points
which gives the best result according to our experiment. The
absolute threshold still also causes some problems, so we add
another mechanism to allow Rovio to localize itself in both
backward in forward direction on the waypoint and estimated
its current position by the most matched picture based on the
number of matched points, the number of interested points,
and the ratio. When tested on Rovio, this method seems to
give better localization and Rovio lost track of waypoint in
less than 10

D. Experiment with Obstacles

As described earlier, we were successful in doing obstacle
learning and avoidance of many types of obstacles just based
on image processing. The only problem was such objects
such as leg of chair which actually is very close to Rovio but
seems to be located very far to single camera based Rovio.

There was another problem with learning which was
caused by instability of IR sensor. IR sensor sometimes
wouldn’t detect one-inch tall obstacles. In that case, Rovio
would just run over it. Even though it was real obstacle,
Rovio was able to climb over and pass-by the obstacle which
is not a big of problem.

And as described earlier, though there were lots of chal-
lenges, obstacle learning and avoidance works well on both
carpet and glossy surface of the hallway.

E. Experiment with WIFI Access Points

When Rovio changes AP, it freezes for a while. This
especially causes a problem when Rovio is around the border

between two AP’s. It keeps changing the access points and
therefore is frozen for a long time. To prevent it, a laptop
was made as a WIFI point itself, and someone follows Rovio
with it.

F. Experiment with Obstacle Size Calibration

Two very long and straight rods were used to measure the
viewing angle of Rovio’s camera. They located in front of
Rovio and were adjusted so that they are just out of bounds
from Rovio’s sight, parallel to the vertical edges of pictures.
As a result, the two rods positioned as a big V-shape with
angle of 52, and any point inside could be seen by Rovio’s
camera.

To relate the coordinate of a pixel from the camera and its
actual location, an object was placed in 11 different distances
straightly in front of Rovio (the middle x-coordinate in pic-
ture). Pictures were taken independently for 1each datapoint,
and the plot of y-coordinate of picture vs actual distance were
drawn. It was found out that they have quadratic relation with
y-coordinate, and linear relation with x-coordinate. The error
bound was about 3mm.

Similar approach was used for height measurement. Ob-
jects with different heights were placed at different points
(and those points were the same for all objects), and their
heights in pixel were recorded. The relation between actual
distance and the change in height in picture was measured
and recorded.

G. Experiment with Battery Life

Rovio has a very short bettery life, and is often not charged
very well. It was common for a Rovio (dramatically different
from each Rovio) to run out of battery and stop in the middle.
We tried to minimize the number of HTTP requests to Rovio
to use less battery.

V. CONCLUSION

Rovio navigates reasonably well based on vision waypoint
and is able to avoid various types of obstacles on both carpets
and glossy surface as shown in the video. Rovio barely
ever hits an obstacle as long as Rovio is fully charged and
IR sensor returns correct value. When Rovio is not fully
charged, they tend to make smaller turn which makes Rovio
to sometimes hit obstacles by the side-wheel slightly. But
even though it is not charged fully, it navigates without
too much of a problem. Best part was that it was able to
distinguish between real obstacles and tiles on the floor.
It was able to navigate anywhere in Upson Hallway even
though it had lots different colors and sets of tiles. One of
the longest drive without hitting we were able to see was
from Robot Lab to another Robot Lab (Prof. Saxena’s Lab)
and almost all the way back to the location where we started.
Unfortunately, we were not able to take video due to problem
where WIFI Access Point caused problem or Rovio’s battery
would die out before traveling farther.

Navigation using SURF also worked well given that the
images on the waypoint have sufficient number of interested
points. If the image has too few features, Rovio sometimes



goes too far forward and could not get back on the track.
Another problem we had was when SURF and obstacle learn-
ing/avoidance was combined together. It worked fairly well
as shown in video, but when there were too many obstacles,
obstacle learning/avoidance algorithm would sometimes lead
Rovio out of the path which causes SURF to lose the image
it was searching for. If we had some more planning applied,
it would have worked better.

Except the times when too many obstacles causes Rovio to
be out of path, Rovio generally does not get stuck because we
have a controller that prevents Rovio from making repeated
moves, for example, it would not make a right turn if it made
a left turn as the last move.

REFERENCES

[1] Obstacle Avoidance. Robo Realm. 20 Feb. 2010. http://
www.roborealm.com/tutorial/Obstacle_Avoidance/
slide010.php

[2] JH Labs for Java Image Editor project http://www.jhlabs.com
[3] Apache Commons Math http://commons.apache.org/

math/
[4] JOpenSURF http://www.stromberglabs.com/

jopensurf/
[5] Herbert Bay, Andreas Ess, Tinne Tuytelaars, Luc Van Gool ”SURF:

Speeded Up Robust Features”, Computer Vision and Image Under-
standing (CVIU), Vol. 110, No. 3, pp. 346–359, 2008

[6] Rovio User Manual http://www.wowwee.com/static/
support/rovio/manuals/Rovio_Manual.pdf

[7] Rovio API Document http://www.wowwee.com/static/
support/rovio/manuals/Rovio_API_Specifications_
v1.2.pdf


